1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
jorjafmc402024 edited this page 2025-04-07 22:23:50 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, archmageriseswiki.com you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses support discovering to improve reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key differentiating function is its reinforcement knowing (RL) step, which was utilized to fine-tune the design's actions beyond the standard pre-training and wiki.dulovic.tech tweak procedure. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, indicating it's equipped to break down complex queries and factor through them in a detailed way. This directed thinking process allows the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT abilities, aiming to generate structured responses while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation design that can be incorporated into different workflows such as representatives, sensible thinking and information analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, enabling effective reasoning by routing queries to the most pertinent professional "clusters." This method permits the model to specialize in different issue domains while maintaining general efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to mimic the habits and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as an instructor design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and evaluate models against key security criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and wiki.eqoarevival.com standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limitation boost, develop a limitation boost demand and reach out to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, prevent damaging material, and assess designs against crucial security requirements. You can execute precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The design detail page provides vital details about the model's abilities, pricing structure, and application guidelines. You can discover detailed usage guidelines, including sample API calls and code snippets for integration. The design supports different text generation jobs, including content creation, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT reasoning capabilities. The page also includes implementation options and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a variety of circumstances (in between 1-100). 6. For example type, pick your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and encryption settings. For most utilize cases, the default settings will work well. However, for production releases, you might desire to examine these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can experiment with different prompts and adjust design criteria like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal outcomes. For instance, content for inference.

This is an excellent method to check out the model's thinking and text generation abilities before integrating it into your applications. The play ground supplies immediate feedback, assisting you comprehend how the model reacts to numerous inputs and letting you tweak your prompts for optimal outcomes.

You can quickly evaluate the model in the play area through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, oeclub.org you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends a demand to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two convenient techniques: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you pick the technique that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design browser displays available designs, with details like the provider name and model capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card reveals essential details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this design can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the design details page.

    The model details page includes the following details:

    - The model name and service provider details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the design, it's recommended to evaluate the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the automatically created name or produce a custom-made one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is essential for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we strongly suggest to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to release the design.

    The release procedure can take numerous minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this moment, the design is all set to accept inference demands through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is total, you can conjure up the design utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is supplied in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent undesirable charges, complete the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, garagesale.es under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed deployments section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop innovative services using AWS services and sped up calculate. Currently, he is focused on developing methods for fine-tuning and optimizing the inference efficiency of large language designs. In his downtime, Vivek delights in treking, viewing films, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing options that assist consumers accelerate their AI journey and unlock service value.